c
这是网络上出现的关于货运公司的运输问题讨论,是目前高校物流**毕业论文话题,内容涉及广泛,线性规划模型、减小运输成本考量……等等,下面是针对该问题的详细解决方案。 1 摘要 本文根据货运公司需要完成的运输量和确定的运输路线图,对货运公司的出车调度方案进行分析和优化,分别建立了线性规划模型和0-1规划模型,解决了车辆安排问题,得出了运费较小的调度方案。 **,由于每次出车的出车成本费是固定的,为了减小运输成本,就要减少出车次数,但同时又要满足各公司对材料的需求,以公司需求为约束条件,以较小出车数为目标函数,建立一个线性规划模型,并用Lingo求解,得出了较少出车次数为27辆。进一步考虑运输车调度问题,由于出车方向不定,分为逆时针和顺时针两种情况,而且这两种情况是非此即彼的对立关系,故建立了一个0-1规划模型,0表示顺时针行驶,1表示逆时针行驶,采用Lingo求解,得出了运输车在运输途中不允许掉头的调度方案(见表一)。 问题二中允许运输车掉头只会影响运输车卸货后空载的行驶路程,也即运输车的空载费用,故通过修改目标函数中的相关系数,仍然建立线性规划模型和0-1规划模型,采用Lingo求解,得出需要安排的运输车为3辆,运输途中允许掉头的调度方案见表二。 问题三中增加了运输车的种类,并区分了运输车空载时的运费,由于运输车装载材料的方式有很多种,在上面分析的基础上,增加约束条件,得出一种新的线性规划模型,通过Lingo解得需要安排的车辆数为5辆,调度方案见表三。*(2)小问中,考虑部分公司有道路相通,采用Dijkstra算法来解决这类较短路问题。 关键字:线性规划模型,0-1规划模型,Dijkstra算法 2 问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是一的双向道路(如图一)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不**过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时**小件在上,大件在下。 上海到株洲物流专线)